2		$x^2 + 6x = 1$	M1 expands as when expa	P1 equating: equ	m: $5x+5x+x-3+$ g $18x-6=14x+8$ g: $x=14/4=3.5$ Find area: "3.5" as e.g. $(x+3) \times (x+3) \times (x$	7x-3 (=18x-6) (4x=14) oe × 3+4 (ft) or "3 (x+3) or at least to $(x+3)$ or at lea	wo correct area expressions e one error in the four terms error in the 6 terms	
3		Shows reasoning to reach y=3	M1 iso ter 3x M1 sul len eg	rms equation 2x + 6 = 5x - 9 plates x and number ms = 15 bestitutes "5" into side agth $2 \times 5 + 6$ (=16) $2 \times 5 + 6 = 3$ or $16 \times 3 = 48$	48+3 (=16) forms equation or $5x - 9 = "16$ isolates x and in 2x = "10" or $5xshows x = 5 for$	number terms x = "25"	3(2x+6) = 48 or $3(5x-9) = 48$, condone missing bracket Isolates x and number terms $6x = "30"$ or $15x = "75"$ forms the second equation $x=5$ from 2 different equations.	
4		x>2	M1 for + c M1 for M1 for M1 for	for process to derive algebraic expressions for area of both rectangle and triangle eg $(x-1)(3x-2)$ and $(2x \times x) + 2$ (condone missing brackets) for method to rearrange inequality to $2x^2 - 5x + 2 > 0$ oe providing in the form $ax^2 + bx + c > 0$ or a correct method to solve $2x^2 - 5x + 2 > 0$ or establishing critical values 2 and $\frac{1}{2}$ or establishing critical values 2 and $\frac{1}{2}$				
5	Triangle of area 18	eg $\frac{1}{2}$ (2 + 7 OR for a tri OR for a tri A1 for a triangle	for a complete method to find area of trapezium $eg \frac{1}{2}(2+7) \times 4 (=18)$ The value for the area of the trapezium must be clear for the ft to be checked must be clear for the ft to be checked on triangle drawn of area 36 on for a triangle that would give an area ft their area of trapezium for a triangle drawn of area 18 $eg base = 6$, height $= 6$ or base $= 9$, height $= 4$ or base $= 9$, height $= 4$ or base $= 4$				for the ft to be checked.	
6	5 P1 P1 P1 A1		for process to find the area of the triangle, eg. $0.5 \times (x + 4)(x - 2)$ oe OR for process to find the area of rectangle and 27.5×20 eg. $(x + 4)(x - 2)$ and 55 (dep P1) for process to expand the brackets and derive a equation, eg. $x^2 + 4x - 2x - 8 = 55$ or $0.5(x^2 + 4x - 2x - 8) = 27$. (dep P2) for complete process to solve the quadratic equ. $x^2 + 2x - 63 = 0$ eg. $(x - 7)(x + 9)$ (= 0) or $\frac{-2 \pm \sqrt{2^2 - 4x + 1x - 63}}{2x + 1}$ or $(x + 1)^2 - 1 - 63$ (= 0) cao		c 2, or	Trial and improvement methods must be fully correct identifying the value of x as 7 (3 marks) or the shortest side as 5 (4 marks) An answer of 5 with no supportive working gets no marks		

	17.6		,	
7	17.6	P1	for correct trig statement, eg $\sin 30 = \frac{h}{6}$	
		P1	for complete process to find h , eg $6 \times \frac{1}{2}$ (= 3)	
		P1	for correct substitution into the area of a trapezium formula,	
			$eg \frac{1}{2}(a+b) \times "3" = 66$ or $a+b=44$	
			eg $\frac{1}{2}(a+b) \times "3" = 66$ or $a+b=44$ or $\frac{1}{2}(2x+3x) \times h = 66$	
		P1	for complete correct process to find the length of AB,	
			$\operatorname{eg}\left[\frac{66\times2}{3}\div(2+"3")\right]\times2$	
		A1	cao	An answer of $\frac{88}{5}$ gets P4 A0
				3